Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Journal of Southern Medical University ; (12): 32-38, 2016.
Article in Chinese | WPRIM | ID: wpr-232515

ABSTRACT

<p><b>OBJECTIVE</b>To evaluate the therapeutic effect of transplantation of mesencephalic neural stem cells (mNSCs) genetically modified by glial cell line-derived neurotrophic factor (GDNF) gene in a rat model of Parkinson disease.</p><p><b>METHODS</b>mNSCs isolated from the lateral component of the midbrain of fetal rats at gestational age of 14 or 15 days were cultured for 5 days before genetic modification with GFP or GDNF gene. Rat models of Parkinson disease established by stereotactic injection of 6-hydroxy dopamine in the ventral area of the midbrain and the medial forebrain bundle were randomized into 3 groups to receive PBS injection, GFP gene-modified mNSCs transplantation, or GDNF gene-modified mNSCs transplantation into the right stratum. The behavioral changes of the rats were evaluated by observing rotations induced by intraperitoneal injection of apomorphine after the transplantation, and the survival, migration and differentiation of the transplanted cells were identified by immunohistochemistry.</p><p><b>RESULTS</b>Transplantation with GDNF gene-modified mNSCs significantly improved the behavioral abnormalities of the rat models as compared with PBS injection and GFP gene-modified mNSCs transplantation. At 56 days after the transplantation, a greater number of the transplanted cells survived in the rat brain and more differentiated dopaminergic neurons were detected in GDNF gene-modified mNSCs transplantation group than in GFP gene-modified mNSCs transplantation group.</p><p><b>CONCLUSION</b>GDNF gene-modified mNSCs transplantation can significantly improve dyskinesia in rat models of Parkinson disease, but the molecular mechanism needs further clarification.</p>


Subject(s)
Animals , Rats , Disease Models, Animal , Glial Cell Line-Derived Neurotrophic Factor , Genetics , Therapeutic Uses , Mesencephalon , Cell Biology , Neural Stem Cells , Transplantation , Parkinson Disease , Therapeutics , Stem Cell Transplantation
2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 235-8, 2009.
Article in English | WPRIM | ID: wpr-635139

ABSTRACT

This study established superparamagnetic iron oxide (SPIO)-labeled nerve growth factor-beta (NGF-beta) gene-modified spinal cord-derived neural stem cells (NSCs). The E14 rat embryonic spinal cord-derived NSCs were isolated and cultured. The cells of the third passage were transfected with plasmid pcDNA3-hNGFbeta by using FuGENE HD transfection reagent. The expression of NGF-beta was measured by immunocytochemistry and Western blotting. The positive clones were selected, allowed to proliferate and then labeled with SPIO, which was mediated by FuGENE HD transfection reagent. Prussian blue staining and transmission electron microscopy (TEM) were used to identify the SPIO particles in the cells. The distinctive markers for stem cells (nestin), neuron (beta-III-tubulin), oligodendrocyte (CNPase) and astrocyte (GFAP) were employed to evaluate the differentiation ability of the labeled cells. The immunocytochemistry and western blotting showed that NGF-beta was expressed in spinal cord-derived NSCs. Prussian blue staining indicated that numerous blue-stained particles appeared in the cytoplasma of the labeled cells. TEM showed that SPIO particles were found in vacuolar structures of different sizes and the cytoplasma. The immunocytochemistry demonstrated that the labeled cells were nestin-positive. After differentiation, the cells expressed beta-III-tubulin, CNPase and GFAP. It was concluded that the SPIO-labeled NGF-beta gene-modified spinal cord-derived NSC were successfully established, which are multipotent and capable of self-renewal.


Subject(s)
Cells, Cultured , Dextrans , Embryo, Mammalian , Magnetic Resonance Imaging , Magnetics , Magnetite Nanoparticles , Nerve Growth Factor/genetics , Nerve Growth Factor/pharmacology , Neural Stem Cells/cytology , Spinal Cord/cytology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL